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I A p.Adic Cohomological Melhod for the
i Weierstrass Family and Its Zeta Invariants

I 
I GOROKATO 

Dedicated 10 my parents. 

ABSTRACT. Arter a survey of the Weierstrass family and cohomology, we 

compute lhe lifted homology of lhe Weierstrass family wilh compact supports so 

that explicit formulae for the zeta function of each fibre of the Weierstrass family 

may be obtained. The (co-)homology theory that we use is found in eLI]'~] and 

[L3). Therefore, this article can be regarded as an application of Lubkln's p-adic 

theory of cohomologies to an algebraic family called the Weierstrass scheme over the 

ring (Z/pl)[g2,g3). The cohomologica1 background for the computation will be 

rather carefully exploited. 

1. Introduction 

One of the most fundamental motivations in algebraic geometty is to 
study the common zero points of a finite number of polynomials in 
several variables, and one of the main goals in number theoretic 
algebraic geometty is to count the number of common zero points of the 
set of polynomials. 

The congruence zeta function associated with the polynomials 

provides the number of zeros. That is, let k = IFq be a finite field of 

q = pQ elements, and let V be an algebraic variety over k and a 

complete scheme embedded in the projective space pN (0) over the 

universal domain O. 

The rmal version of this paper will appear in (K). 

1991 Mathematics Subject Classification. Primary 1480, 14010. 
Panially supaned by CARE Grnm 5917. 
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CORO KATO'" 
For each natural number m = I, 2, .... let *m C n be the unique 

We", 

function
extension of degree mover k, Le. k = f qm. The finite set Nmm 

computati
denotes the number of points on V whose coordinates are in k • Le. 

km-rational points on V. That is, 

First consider the infinite series in u: 

hose integral is given by 

N N 
N 1U + ::2. u2 + :.:.l u3 +2 3 

m 
curves ml 

TheY 

is obtaine 

square TO 

Geomem 

the squarf 

Proj((.... 

e congruence zeta function of V is dermed by 

under the
~2 ".3..3

2 u + 3 u + ... )­

Here. theotice that the first few terms look like 

b, C + 82' 

Zy(u) = 

!!.z.
( 2 + ~N~Y + (~ + 

where ea 

herefore. it is sufficient to know the explicit form of the zeta function 

o know numbers of zeros, Nt, N2, ... in IP NCk 1), IP NCk2), ...
 

espectively. An invariant called a p-adic cohomology group of V will spec R
 

the device for us to compute the zeta function of V in what follows. 



A p.ADIC COHDMOLOGICAL. METHOD .., 
We are mainly concerned with the Weierstrass family and its zeta 

unique 
function (zeta matrix). This is one of few cases where exacl 

set Nm 
computation is possible, and applications to factoring integers via elliptic

k , i.e.m
curves may be possible. See [Le]. 

The Weierstrass family W R corresponding to any ring R with 1R 

is obtained by a normalization by linear changes of coordinates of "the 

square rOOI of a general cubic family" y2 = a..-J + biZ + ex + d, a" O. 

Geometrically speaking, the Weierstrass family 'IrIR is the pull-back of 

the square root of the general cubic family 

Proj([a, a-I, b, e, d, X, Y, Z) I (homogeneous ideal generated by 

under the closed immersion 

Here, the closed immersion is defmed by the ideal generated by (a - 4, 

b, e + E2' d + E3l and such that 2 is invertible in R. Explicitly, 

'IrIR = Proj(R[E2' E3' X, Y, Z)) I (homogeneous ideal generated by 

_Y2Z + 4Xl - ErZ2 - E3Z3», 
where each of X, Y and Z has degree +I and all the elements of 

function R[E2' Ell have degree zero in the R[E2' E3]-algebra R[E2' E3' X, 

Y, Z}. On the other hand, the above linear changes provide a map over 

r V will speeR 

:ollows. 
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Spec (RfE2' E3]) <--- Spec (R[a. a· l• b. c. d]) two of 

such that the pull-back of 'iW R under this map is canonically 
have a 

isomorphic to the general cubic family, assuming 6 is invenible in R. 

By applying the Jacobian criterion to the corresponding affine t. = 0 , 

algebraic Weierstrass family over Spec (R[E2' E3])' we find that 

the sel of poinls of the base Spec (R[E2' E3]) over which the fibre 
equal, i. 

is singular is the set of all the points on the hypersurface 

t. = 
3 2

E2 • 27E3 = O. leI 

Note that for a poinl p E Spec (R[E2' E3]) on the base of 'IrlR field 0 

isomoll 
the fibre of 'IrlRover p is singular if and only if t. = E~ 

~(X.( 

vanishes at p. i.e. t. goes into zero in I';(p). the residue class field of the cI 

let Xto 
at p. Al such a point p. observe that alilhe singular points lie on the 

topolog 

affine open Spec(1K (p) [X • Yj f (y2 • 4XJ + E2X + EJ»)' There is =H~(X 

The pre 
one and only one singular point on this affine open, Le. (0,0) or 

whichi 
(0) )

3 
E J . 2: (0)·0 

. (0) (0)
for the Images E2 .E3 of E2.E3 

. 
m 

.
IK(P)· 

(0)
E2 = C) = H 

E2 canonic 

83°) = O. or E~O) " 0 (hence E~) " 0). respectively. Notice thaI the the c1as 

singular point on the singular fibre is a rational point over IK (P). to the ( 

subspa. 

Furthermore. if t. = 0 bUI E~O) " 0 (hence E~O)" 0). Ihen exactly 
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two of the roots of the cubic 4X3 - gp -g3 = 0 are equal, i.e. we 

lonically 
have a projective line with an ordinary double point over 1K(::p). If 

.e in R. 

19 affine 6 = 0 and g~) = 0 (hence g~O) ~ 0), then all the three roots are 

find that 
equal, i.e., the fibre is the cusp y2 = 4X3 

the fibre 

rsurface 2, Cohomology 

Let X be a complex algebraic variety which is embeddable over the 

field of complex numbers C. Then there exists a canonicalof 'WR 

isomorphism between the homology of X with compact supports 
2

27g 3 ff,,(X, C) (see ~l for its definition) and the usual singular homology 

of the classical topological space XlOp with compact supports. That is,
lass field 

let X lOP be the closed points of X with the classical Hausdorff 

lie on the topology. Then by the definition of ff,,(X, iC), one shows H~(X, iC) 

~ H~(Xtop' iC), the usual singular homology with compact suppons. 
There is 

The proof is given essentially by definition of ff,,(X, iC): Take Y, 

(0,0) or which is simple over C, so that X may be closed in Y. Then ff" (X, 

•iC)=H2N'\Y,Y-X,n )' Since Y is simple over iC, wehave 
) : g~) = , c 

canonically -h(y, Y - X, n:) .:, H2N·h(Ytop' YIOp - XIOP ' C),I H2N

e thalthe I the classical singular cohomology. By Lefschetz duality being applied I 
to the oriented 2N-dimensional topological manifold and theI Ytop&\ (p). I
 

I subspace we have H2N.h(YIOP' YIOp - iC) =
X IOP , X IOP , 

1 exactly I, 
I 

I 
j 
I 
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-h -h ­
He(X top' C). Here He(X top' C) denotes 'he classical Ce<:h Anol 

cohomology. Since X is an algebraic variety, we have H~(Xtop, C) is 'he fol 

= H~(Xtop' C). All 'he groups are finitely generated over C. Hence, THEOR 

taking the duality, we have 
extensio 

embedd< 

completing the proof. which is 

Particularly, if X is an embeddable complete complex algebraic 

variety, then H'f,(X, C) - Hh(Xtop ' C). 

On a compact topological space. singular homology with compact as vecto 

supports is the same as ordinary singular homology. In particular for a 
The 

fibre X of the Weierstrass family over a point :p in the base where 

11\('1') = C, we have the following: K eOOla 

1IfJ(X, C) - C over y 

~(X, C)­ have 

C EB t for an elliptic curve X 
Hh( 

C for a projective line with an ordinary double point 

o for a projective line with a cusp NOTE 

containi
~(X, C)- C 

condus~ ,,
and H'f,(X, C) = 0 for h " 0, 1,2. l sequenc 

~ 

1, 
I 



,al 'tech 

h
,(X'op' C) 

C. Hence, 

( algebraic 

lh compact 

icular for a 

)ase where 

.Ie point 

A p-ADIC COHOMOLOCICAL METHOD ."
 
Another general principle for varieties over characteristic zero fields 

is the following theorem. 

THEOREM. Let K be a field of charaCIeriseic zero, let L be an 

exrensionjie/d of K. Let X be an algebraic variety over K which is 

embeddable over K. Then X x L is an algebraic variety over L 
K 

which is embeddable over L. and we have canonically 

H'j,(X, 10 o L - H'j,(X x L, L) 
K K 

as vector spaces over L. 

The proof of this theorem goes as follows. Let Y be simple over 

K containing X as a closed subvariety. By Ibe facts Y x L is affine 
K 

over •Y and the direct image of 0L (Y x 
K 

L) is •(0K(Y)) 0 
K 

L, we 

have 

•
Y x L - X xL, 0).
K K 

NOT E If we have such a hypothesis as: K and L are rings 

containing 10 and there is a ring homomorphism from K to L, the 

conclusion of the above theorem becomes a right half plane spectral 

sequence 

Torp(~(X, 10, L) => H~(X, L). 
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See the forthcoming fK}. A generalization of the spectral sequence to p eSp, 

Lhe non-constant characteristics is difficult, since the dagger completion Then we 
is involved. 

Namely, onc can compute the homology with compact suppons of 
~() 

any embeddable variety X over a field K of characteristic zero by the 
k 

following Lefschetz Principle: 
k 

For a field K embeddable in the field of complex numbers C, by 

the theorem above, o 

(LP) !fn(X, 10 @ c - H~(X x C, C) 
K 

holds, The right-hand side is the classical complex homology with 
Next 

compact suppons of the complex algebraic variety X xC. If K is an ring and 
K 

arbitrary field of characteristic zero, !fn(X,10 can still be computed by Let k = 

be a con 
an embeddable algebraic variety Xo over a finitely generated field Ko 

as its res 
over Q with Xo x K-X. That is, H~(X,K)-H~(Xo,Ko) @ K, 

followinKO KO 
!fn(Xo, KO) can be handled by (LP) above. PROPC 

We will apply what we have mentioned to the fibres of the 

Weierstrass family. 

PROPOSITION. Let X be a fibre of the Weierstrass family 'WR' 

corresponding to any commutative ring R with identity, over a point 



I sequence to 

:r completion 

:t suppons of 

c zero by the 

nbers C, by 

nology with 

IfKisan 

:omputed by 

led field KO 

bres of the 

JVer a point 

A p-ADIC COHOMOLOGICAL METHOD '" 
t' e Spec (R[g2' g3]) such tlult k = 1K(t') is of clulracteristic zero. 

Then we have: 

H';(X, k) = 

k E9 k, if X is non-singular, i.e., X is an elliptic curve 

k , if X is a projective line with an ordinary double 

point 

0, if X is a projective line with a cusp 

~(X, k) = k, and 

~(X, k) = 0 for h = 3, 4, .... 

Next we will consider the non-zero characteristic case. Let R be a 

ring and let X be a fibre of 'WR over some t' e Spec (R[g2' g3J). 

Let k = 1K(t'). Suppose the characteristic p of k is not zero. Let cr 
be a complete discrete valuation ring with mixed characteristics with k 

as its residue class field and K as the quotient field of ~. We have the 

following facts. 

PROPOSITION. If X is non-singular, then the lifted K-adic 

Iulmalagy with campoct supparts behaves as fallaws: 

K for h = 0 or 2 

~(X, K) = K ffi K for h = 1 

o for h ., 0, I, 2 . 
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PROOF. If X is liftable over (} by a simple and proper lifting over 

K, then XK is an elliptic curve. Then H'J,(X, K) = H 2N.h(X, K) by 

taking Y =X in the definition. Then, by [L1l, H 2N-\X, K) is 

where 

unless 

that U 

isomorphic to the hypercohomology H 2N-h(X K' K). We have 

H 
2N 

-
h 
(XK, K) = H~(XK' K), where H~(XK' K) is computed in the 

previous proposition for h = 0, I, 2, .... affine 

If X is a singular fibre, then one can prove !fa(X. K) = K. H~(X, 
compu 

K) ­ K and H~ (X. K) - 0 for h = 3. 4, .... In the following 

section, we will prove the following by direct computation: Let 

~(X. K) -

{ 

K. jf X 

0, if X 

is a projective line with an ordinary double point 

is a projective line with a cusp. 

F indl 

the ch; 

homorr 

NOTE Each fibre X of the Weierstrass scheme ""'Rover :p E 

Spec (R[g2' g3J) has a rational and simple point, called the point at 

infiniry whh homogeneous coordinates (0,1,0). We denote the affine 

curve obtained from X - (0, I,0) by U. The long exact s"'Juence of the 

homology with compact supports is induced as: 

where 

homon 

inducin 

••• -+ H~_2.(O,l,O), K) -+ H~(X, K) -+ H~(U, K)-+ ... 



A p-AOIC COHOMOlOCICAL Cl.IETHOD '" 
~r lifting over 

.h(X,K) by 

'.h(X, K) is 

). We have 

lpUled in the 

=K,H~(X, 

Ie following 

)Ie point 

over :p e 

the point at 

,Ie lhe affine 

luence of the 

~ ...
 

where n = dim X = 1 in our case. The flrst homology group is trivial 

unless h = 2. Therefore. it suffices to compute ~ (U. K). Note also 

thOl U is closed in A 2(k) = Spe<: (k[X, Y]), whose lifting is given by 

A 2(0) = Spec (O[X, Y]). Then ~(U, 10 = J-t'.h(A 2(k), A 2(k) - U, 

•
0,,«A2(0))1 ~ K), he Z. Since />,2(k) and />,2(k) - U are both 

affine open sets, the covering {A 2(k), A 2(k) - U} may be used to 

compute the homology group. 

3. The Universal Coefficient Spectral Sequence 

Let d be an 0 -algebra with an endomorphism F on d such that 

F induces the p-th power endomorphism of A = d / Pd, where P is 

the characteristic of k = D< (0"). Then there exists a unique ring 

homomorphism 

d ---+ W(AP --), 

where WeAl is the Witt vector of A = dlPd, such that the above ring 

homomorphism is compatible with the endomorphism F of d.. 

inducing the identity of A. The construction of the ring homomorphism 

-d ---+ WeAl is as follows: let dF be the direct limit of the sequence 

F F F 
d. ---+ d. ---+ d ---+ __ •• 
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...,.. 
Then, aF obeys the universal characterization of the Witt vector 

W(A) of A. Ne<t let p be a prime ideal of A. Then we have a 

-natural map from d into W{lK(pf ), which is compatible with F. 

For example, if rK (:p) is perfect, there is induced 3 unique ring 

homomorphism from d into W{IK (p» of IK (p). If IK (p) is a 

finite field, then there is a natural homomorphism 

d -t W{IK(p », 

where W{IK(p» is the unique Win vector of lI\(p) that is the mixed 

characteristic complete discrete valuation ring with its Jesidue class field 

lK(p). In the case of the Weierstrass family, we let d = Zp[g2' g3]' 

Then for any given closed point p E Spec (A), the residue class field 

lK(p) is finite. Then the images g~) and g~) of g2 and g3 in 

lK(p) generate lK(p) over the prime field, i.e. lK(p) = (ZlpZ)[g~), 

g~O)]. The Win vector W{IK (P» of D< (P) can be described as 

follows: each of giO) and g~O) is either a root of unity of order prime 

to p, or else zero. Choose an element p E IK (:p) which is a 

multiplicative generator of the multiplicative cyclic group lK(p)· to}. 

Then eat 

p or els 

Z 
p 

as, 

order ex 

generate 

similarl~ 

Teichrni 

Let 

which it 

prime ic 

one obt 

examph 

W{IK(+ 

W{IK(p 

Let 

ring ani 

over S 
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Vitt vector 

we have a 

Ie with F. 

lIque nng 

«1") is a 

the mixed 

class field 

class field 

)cribed as 

-der prime 

vhich is a 

:1") - (01. 

Then each element of lK(p). e.g. g~O) and g~O}. is either a power of 

p or else zero. Let a be the multiplicative order of p. Then embed 

zp as a subring of C. and let pI be any fixed root of unity in C of 

order exactly Q. Then, W(K(1"»= Zp [p'], i.e., the subring of C 
~ 

generaled by Zp and p'. Let (g~O»' = (p')i, where g~) = pi and 

similarly for (g~O». If g~) = 0, then define (g~»' = O. They are 

Teichmillier representatives of g~O) and g~O) in W(K (1" ». 

LeI d. be an ~-a1gebra, and let F be a ring endomorphism of d. 

which induces the p-th power endomorphism of d. I pd.. Then, for any 

prime ideal 1" E Spec <A <8> k)red' we have shown in the above how 
o 

one obtains a natural homomorphism from d. to W(I\ (1" ». For 

example, for d. = Z p [g2' g3], if 1" is a maximal ideal of A = <AI 

Pll)red =<A <8> kJ,ed so that K (1") = (Z I pZ )[g<f), g~\ then 
o 

W(IK(1"» = 
~ 

Zp [(g~O»', (g~O»'J. In this case, the natural map d.-> 

W(IK(1"» is given by g2'" (g~»' and g3'" (g~OY 

LeI B. = W(K(1")P--). Then B. is a complete discrete valua,ion 

ring and B.. ® Q is a field of characteristic zero. If X is a scheme 
Z 

over Spec (A) that is embeddable over A. then the fibre X p over 
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lI\(p) is an algebraic variety over the field lI\(p). Let Y:p = X:p x 
I\(:p) polynomi: 

lK(pf -. Then the zeta matrices have coefficients in the quotient field 

K:p = lL ® Q of the complete discrete valuation ring Ii = X:p is pre 
Z 

W(II\(pf -). The universal coefficient spectral sequence is: 

where we 

with the abunnent ~(Y:p. K:p)' PrincipaUy speaking, this universal	 q. When 

module, tl
spectral sequence shows how the lifted p-adic homology of the scheme 

X over Spec (A) with compact supports determines the lifted p-adic 

homology of aU the fibres Y:p in this algebraic family. Furthermore, We" 

the zeta endomorphisms of He (X , d..t 181 Q) compute the zeta group W1• Z 

endomorphisms of ~(Y:p' K:p) of each fibre Y:p. family H 

Suppose that II\(P) is a finite field. If the term ii.,q of the above 

universal coefficient spectral sequence is finite dimensional over the 
Note that 

quotient field K:p of the complete discrete valuation ring W(II\(P» 

for all the p and q. we can compute the zeta function of each fibre 
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quotient field 

n nng fL = 

IS: 

this universal 

of the scheme 

Ii fled p-adie 

Furthermore, 

lute the zeta 

of the above 

onal over the 

Ig W(K(p» 

of each fibre 

y l' = X l' as follows. Let P p.q be the reverse characteristic 

polynomial of the endomorphism of the £1- -tenn. which is induced byp.q 

p'-th power map. p' = card(K(p». Then. the zeta function of the fibre 

xP is provided by the fonnula 

= Up·/T) 

n P p.q(T) 
t>+<!=<ven 

where we assume that £1- = 0 for all but finitely many pain; of p and p.q 

q. When the lifted p-adic homology with cornp3.ct supports is a free 

module. the zeta endomorphism is said to be the zeta matrix. 

4. Zeta Endomorphisms and Zeta Matrices 

We will compute the zeta endomorphism of the flrst homology 

group with compact supports of the finite points of the Weierstrass 

family Jt;(U.l!.t I8i 0). ThaI is: 
Z 

U = 'Irl Z1pZ n ,,2(Spec«Z/pZ)[g2' g3]))' 

t = tNOle thaI Jt; (V. I!.	 I8i 0) +- Jt;('Irll/pZ ' I!. I8i 0) as seen. e.g.• in 
Z Z 

A 

[1<2)' Let K be the quotient field of I!. = Z p [E2' g3)' and let K t be 
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A 

the quotient field of d t = Z p [gz' g31t. Even though	 is coml 

is not finitely generated over d t ® 0, H~ (U, d t ® 0) ® IK is a o -adic 
Z Z 

vector space of dimension two over IK. From the universal spectral denOle( 

sequence corresponding to any non-zero-diver I E d. we have the long betweet 

exact sequence: 

"t'
···->ff.(u,dt ® OJ -> ff.(U,.1t ® 0)

h Z h Z 

where 

The 

One can extract the shon exact sequence 
module 

"r" 
0-> !t;(U, d t ® 0) -> !t;(U, d t ® OJ-> 

z Z endamc 

!t;W,dt ® Olt·dt ® 0)->0.
Z Z	 defined 

Hence, !t;(U, d t ® 0) is torsion free, i.e., we have 
Z 

Let f: i 

over AI 

The zeta matrix of the free module of rank two 

• .< t t
N,(U,d	 ® 0) ®t (A~ ® 0)
 

Z K Z
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(U, II. t	 ® iQ) is computed in [K-L}. This free mooule is isomorphic to the 
Z 

Q)®IK isa	 Q -adic cohomology of the open subfamily U6 of non-singular fibres, 

Icrsal spectral denoted as The above isomorphism may be given 

have the long between generators by 

c' dX /\ dY .. YdX 

XC'dX /\ dY .. XYdX, 

2where C = y - 4X3 + 8~ + 83. (See what will follow.) 

The zeta matrix WI e Ma,=(Il.~ ® iQ) on the free 
Z 

module is given as follows: let F: II. --> II. be an 

endomorphism of Zp ·algebra, inducing p-th power map on A. 

defined by 

Let f:	 Ul!. --> Ul!. be the p-th power endomorphism of the scheme Ul!. 

over AIi. Then define 
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and 

where 

By the : 

relative I 

Coker (! 

Weobta 

of 11';(1 

here pT = (4X 3 - g2X - g3'1' - 4X3p + gi xP + g). See [K-L] for 
2(i-1) 

necessary recursive fonnulae. I\. 

Therefore. the zeta endomorphism of 11'; (U• .it ® IQ) 
Z 

is induced 4(i-l) 

from this zeta matrix by the above restriction 

Therefc 

The actual consouction is as follows: by the definition of the lifted p­

adic homology with compact supports of the Weierstrass family over and 

A = (Z/pZ)[g2' g31. 



dX, 

: [K-L] for 

is induced 

the lifted p-

family over 

A p-ADIC COHOMOLOGICAL METHOD '" 

~ (U, At ® IQ) = H3(A2(Spec«l/pl)[82' 831), 
l 

A 2(Spec«l/pl)[82' 831) - u, 

• 2 At)n.l. (A (Spec(lp [82,83]))) ® IQ . 
l 

By the lemma in [K1l on spectral sequences, one shows this third 

relative hypercohomology is isomorphic to 

d 1,0 

Coker (n~ (A [X, Y, Cl))t ® IQ 2. n~ (A [X, Y, Cl))t ® IQ).
Z Z 

We obtain the recursive cohornologous relations among the generators 

of ~(U, At ® IQ) as 
l 

2(i-l)6CidX!\dY - (6i_13)68~C(i-l)dX !\dY-(6i-l1)983C(i.l)dX 

!\dY, and 

4(i-l )6XCidX!\dY - (6i-ll)8~C(i-l)dX
 

!\dY-(6i-13)1883XC(i.l)dX !\dY
 

Therefore, we let 

and 
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where 1 = CP(I	 + prcp + p2r 2c 2p + p3r 3C 3p + ...). See
cP-pr 

[K21 for necessary recursive formulae. Notice that the above recursive 

cohomologous relations compute the lifted homology groups of various 

whersingular fibres. e.g.• the fiber over :p = (g2' g3) has the trivial 

See Ihomology group. See page 10. 

83,(or a 
NOTES 

1. The universal spectral sequences are ueated in the book [L4]. 

Chapter 5. As for zeta invariants. see [L1l. ~l. [K-Ll and [K2J· 

2. A similar computation ofp-th power map of Fermat curves may be 

given as follows: let U be the affine Fermat curve given by Xl + 

yl = lover ZIp Z . Then the associated Z P	 ® O-adic
 
Z
 

cohomology H1(U. 
A 

Zp	 ® 0) is generated by (1- I)' (1- 2) [D1 
Z 

[Ka]
elements {XUyll-l+ldX J,	 where II = O. I •...• / - 3 and ~ = 1- 1. 

[KolI, ...• 2/- 3. There is a cohomologous relation: 

[K-Ll 

for j = O. I. _..• 1 - I. Then the (I - I) • (I - 2) square matrix 

A	 A 

H1(j. Q ) on H'cU.Qp) isdefmedasp 

A 

H1(j, Q )(XuyP-/+ldX) [K)p 
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[) + ... ). See 

.ve recursive 

)s of various 

s the tri vial 

See I. V. Volovich, p-adic string, Class. Quantum Grav. 4 (1987), 

83, for a connection to a p-adic string theory. See also [Ko]. 
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