ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266518875

A p -Adic Cohomological Method for the Weierstrass Family and Its Zeta
Invariants

Article - January 1992

DOI: 10.1090/conm/133/1183975

CITATIONS READS
0 24
1 author:

&= Goro Kato
S
@ California Polytechnic State University, San Luis Obispo

33 PUBLICATIONS 139 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roect 1. Temporal topos approach to quantum gravity formulation. View project

ot Descent theoretic methods for emergence and organization View project

All content following this page was uploaded by Goro Kato on 21 September 2016.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/266518875_A_p_-Adic_Cohomological_Method_for_the_Weierstrass_Family_and_Its_Zeta_Invariants?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266518875_A_p_-Adic_Cohomological_Method_for_the_Weierstrass_Family_and_Its_Zeta_Invariants?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/1-Temporal-topos-approach-to-quantum-gravity-formulation?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Descent-theoretic-methods-for-emergence-and-organization?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goro-Kato-2?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goro-Kato-2?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/California-Polytechnic-State-University-San-Luis-Obispo?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goro-Kato-2?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goro-Kato-2?enrichId=rgreq-28de5dac68011c78dfd313e8db559dd4-XXX&enrichSource=Y292ZXJQYWdlOzI2NjUxODg3NTtBUzo0MDg3OTExNTg5MzU1NTJAMTQ3NDQ3NDgxNTc2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Contemporary Mathematics
Volume 133, 1992

A p-Adic Cohomological Method for the
Weierstrass Family and Its Zeta Invariants

GORO KATO
Dedicated to my parents.

ABSTRACT. After a survey of the Weierstrass family and cohomology, we
compute the lifted homology of the Weierstrass family with compact supports so
that explicit formulae for the zeta function of each fibre of the Weierstrass family
may be obtained. The (co-)homology theory that we use is found in [Ly], [Ly] and
[L3). Therefore, this article can be regarded as an application of Lubkin’s p-adic
theory of cohomologies to an algebraic family called the Weierstrass scheme over the

ring (prZ)[gz,g3]. The cohomological background for the computation will be
rather carefully exploited.

1. Introduction

One of the most fundamental motivations in algebraic geometry is to
study the common zero points of a finite number of polynomials in
several variables, and one of the main goals in number theoretic
algebraic geometry is to count the number of common zero points of the
set of polynomials.

The congruence zeta function associated with the polynomials
provides the number of zeros. Thatis,let k= [F ¢ be afinite field of
g = p? elements, and let V be an algebraic variety over k and a
complete scheme embedded in the projective space PN (€2) over the

universal domain Q.

The final version of this paper will appear in [K).
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142 GORO KATO

For each natural number m=1, 2, ..., let km C Q be the unique
extension of degree m over k, i.e. Kk, = Iqu . The finite set N,
denotes the number of points on V whose coordinates are in k.., de.

k,,-rational points on V. That is,
i N
N, =1lvnprNe)l

First consider the infinite series in u:
Nl + Nou + N3u2 -

whose integral is given by
Np 2 N3 5
N + 22 + 2+
The congruence zeta function of V is defined by

N N
ZV(u)=cxp(N1u + Tzuz + —33—143 + )

Notice that the first few terms look like

Zy(w) =1+ Nu +
N3

N 1 N NN 1
2 2Y.2 2 3
[T* iNlju +[‘3‘°‘+ 432+ T]“ s

Therefore, it is sufficient to know the explicit form of the zeta function

to know numbers of zeros, N, N,, ... in IPN(kl), IPN(kz).

respectively. An invariant called a p-adic cohomology group of V will

be the device for us to compute the zeta function of V in what follows.
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We are mainly concerned with the Weierstrass family and its zeta

function (zeta matrix). This is one of few cases where exact

computation is possible, and applications to factoring integers via elliptic
curves may be possible. See [Le].

The Weierstrass family W, corresponding to any ring R with 1 R

is obtained by a normalization by linear changes of coordinates of “the

square root of a general cubic family” Y2=ar + bx® + cx + d, a#0.

Geometrically speaking, the Weierstrass family Wy is the pull-back of
the square root of the general cubic family
Proj([a, a’!, b, ¢, d, X, Y, Z] / (homogeneous ideal generated by
-Y2Z + aX3 + bX?Z + CXZ2 + dZ3))
under the closed immersion
Spec (R(g5, 831) < Spec (R(a, al b, c, d).

Here, the closed immersion is defined by the ideal generated by {a - 4,

b,c +g,,d + g3} and such that 2 is invertible in R. Explicitly,
Wi = Proj(R[gz. g3 X,Y, Z]) / (homogeneous ideal generated by
-Y2Z + 4x3 - g,X72 - 3,7%)),

where each of X,Y and Z has degree +1 and all the elements of

R(g,. &3] have degree zero in the R[g,, g3]-algebra R[g,, g5, X,
Y, Z]. On the other hand, the above linear changes provide a map over

spec R
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Spec (Rlg,, g3]) « Spec (R[a,a’), b, ¢, d])
such that the pull-back of Wy under this map is canonically

isomorphic to the general cubic family, assuming 6 isinvertible in R.
By applying the Jacobian criterion to the corresponding affine

algebraic Weierstrass family over Spec (R[g5, 831), we find that

the set of points of the base Spec (R[g,, g3]) over which the fibre

is singular is the set of all the points on the hypersurface

A=g;-27g2=0.

Note that for a point p € Spec (R[g,, g3]1) on the base of We
the fibre of Wy over p is singular if and only if A = g% - 27g§
vanishes at p, i.e. A goes into zeroin K(p), the residue class field
at P. Atsuch a point p, observe that all the singular points lie on the
affine open  Spec(K (P) [X, Y]/ (Y2 - 4X3 + g,X + g5)). There is

‘one and only one singular point on this affine open, i.e. (0,0) or

(0)
38 0
"3 (0) , 0 | for the images 8(20),8(30) of g,,83 in K(p): g( Y
2

0) =0, or g(o) # 0 (hence g(o) # 0), respectively. Notice that the

singular point on the singular fibre is a rational point over K(p).

Furthermore, if A=0 but g(o) # 0 (hence g(o)# 0), then exactly

two of
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two of the roots of the cubic 4X3 - 8,X - g3 =0 are equal, ie. we
have a projective line with an ordinary double point over K(p). If
A=0 and 3(20) = 0 (hence g(30) = (), then all the three roots are
equal, i.e., the fibre is the cusp Y2 = 4x3,

2. Cohomology

Let X be a complex algebraic variety which is embeddable over the
field of complex numbers €. Then there exists a canonical
isomorphism between the homology of X with compact supports
H;(X , €) (see [L,] for its definition) and the usual singular homology
of the classical topological space me with compact supports. That is,

let X be the closed points of X with the classical Hausdorff

top
topology. Then by the definition of H}(X, €), one shows H} (X, C)

=~ H;(X C), the usual singular homology with compact supports.

top’
The proof is given essentially by definition of H}(X, C): Take Y,

which is simple over C, so that X may be closed in Y. Then H;(X ,
*
C)= HM"'(Y, Y -X, Qc). Since Y is simple over €, we have

* =
canonically H*A(Y, Y -X, Q¢) » HN Ry, Y00 - X 0p. ©),

top’ top’

the classical singular cohomology. By Lefschetz duality being applied

to the oriented 2N-dimensional topological manifold Y, = and the

top

subspace me, we have HZN-h(Ylop’ Ymp-Xlop, C)=
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HVZ'(XIOP, C). Here ﬁ?(pr, C) denotes the classical Cech

cohomology. Since X is an algebraic variety, we have ﬁ?(X C)

top’
= H';(me, C). All the groups are finitely generated over €. Hence,

taking the duality, we have

2N-h c
H* M ¥y o00 Yiop - Xiop €)= HEX

top! C))

top’
completing the proof.

Particularly, if X is an embeddable complete complex algebraic

variety, then H,(X, C) = H,(X, ., C).

top’

On a compact topological space, singular homology with compact
supports is the same as ordinary singular homology. In particular for a
fibre X of the Weierstrass family over a point p in the base where

K(p) = C, we have the following:
HyX,C)=C

H{(X, €) =

C & C for an elliptic curve X

C for a projective line with an ordinary double point

0 for a projective line with a cusp

Hy(X,C)=C

and H;(X,a:) =0 for h # 0,1, 2.
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Another general principle for varieties over characteristic zero fields

is the following theorem.

THEOREM. Let K be a field of characteristic zero, let L be an
extension field of K. Let X be an algebraic variety over K which is

embeddable over K. Then X x L is an algebraic variety over L
K

which is embeddable over L, and we have canonically
H,(X,K) ® L = Hy(X x L,L)
K K
as vector spaces over L.
The proof of this theorem goes as follows. Let Y be simple over
K containing X as a closed subvariety. By the facts ¥ x L is affine
K
* *
over Y and the direct image of QL(Y x L) is (QK(Y)) ® L, we
K K

have

h o h »
H'Y,Y-X,Q,) ® L = H'Y XL, Y xL-X xL, Q).
K K K K

NOTE If we have such a hypothesis as: K and L are rings
containing @Q and there is a ring homomorphism from K to L, the
conclusion of the above theorem becomes a right half plane spectral

sequence

Torp(H; (X,K),L) = H (X, L).
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See the forthcoming [K]. A generalization of the spectral sequence to
the non-constant characteristics is difficult, since the dagger completion
is involved.

Namely, one can compute the homology with compact supports of
any embeddable variety X overa field X of characteristic zero by the

following Lefschetz Principle:

For a field K embeddable in the field of complex numbers C, by

the theorem above,

(LP) H,(X,K) ® C~H{(X x C, C)
K

holds. The right-hand side is the classical complex homology with

compact supports of the complex algebraic variety X x C. If K is an
K

arbitrary field of characteristic zero, HE(X » K) can still be computed by
an embeddable algebraic variety X over a finitely generated field K,
over Q with Xo x K'~X. Thatis, H}(X, K) = HS(X,, Ky) ® K,
K
Ko 0
H} (X0, K) can be handled by (LP) above.

We will apply what we have mentioned to the fibres of the

Weierstrass family.

PROPOSITION. Let X be a fibre of the Weierstrass Jamily W p,

corresponding to any commutative ring R with identity, over a point

. 0
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P € Spec (R[g,, g3]) such that k =K (p) is of characteristic zero.

Then we have:

Hy(X, k) = k
HY{(X, k) =
k @ k, if X is non-singular, i.e., X is an elliptic curve
k , if X is a projective line with an ordinary double
point
0, if X is a projective line with a cusp

H;(X. k) = k, and

H;(X, k)=0 for h=3,4, ...

Next we will consider the non-zero characteristic case. Let R be a
ring and let X be a fibre of Wy over some p € Spec (R[g,, £5]).
Let k=IK(p). Suppose the characteristic p of k isnot zero. Let @
be a complete discrete valuation ring with mixed characteristics with k
as its residue class field and K as the quotient field of ©. We have the
following facts.

PROPOSITION. If X is non-singular, then the lifted K-adic

homology with compact supports behaves as follows:

K for h =0 or 2

H,(X,K) = {K @ K for h = 1

0 for h #0, 1, 2.
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PROOF. If X is liftable over © by a simple and proper lifting over
K, then Xy is an elliptic curve. Then H((X, K) = H2N-h(x, k) by
taking ¥ =X in the definition. Then, by [L,], H*N (X, k) is
isomorphic to the hypercohomology HzN’h(XK, K). We have
HN X, K) = HS (X, K), where H(Xg, K) is computed in the
previous proposition for =0, 1,2, ... .

If X is a singular fibre, then one can prove HB(X, K)=K, H;(X,
K)=~K and H(X,K)=0 for h = 3,4, ... In the following
section, we will prove the following by direct computation:

H{(X,K) =
{K, if X is a projective line with an ordinary double point

0, if X is a projective line with a cusp.

NOTE Each fibre X of the Weierstrass scheme Wpe over p €
Spec (R[g,, g3]1) has a rational and simple point, called the point at
infinity with homogeneous coordinates (0,1,0). We denote the affine
curve obtained from X - (0,1,0) by U. The long exact sequence of the

homology with compact supports is induced as:

"o o HY L (0,10), K) - HE(X, K) - H,(U,K) = ++,

where
unless
that U
A%(O
*
Q@((ﬁ
affine

compu

Let
F indu
the ch;

homomnr

where
homon
inducin

AW
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X, K) by
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where n=dimX =1 in our case. The first homology group is trivial

unless h =2. Therefore, it suffices to compute HCI(U, K). Note also

that U is closed in Az(k) = Spec (k[X, Y]), whose lifting is given by

£%(O) = Spec (OIX, Y]). Then HS(U, K) =~ H*H(a2(k), A2k - U,
*oa2eont . 2 2

Q,((A%O)) ® K), he Z. Since A%(k) and A%(k)- U are both

affine open sets, the covering {Az(k), Az(k) -U} may be used to

compute the homology group.

3. The Universal Coefficient Spectral Sequence

Let A be an O-algebra with an endomorphism F on 4 such that
F induces the p-th power endomorphism of A =4 /pA, where p is
the characteristic of k = K(J). Then there exists a unique ring
homomorphism

AW ),
where W(A) is the Witt vector of A = A/pA, such that the above ring
homomorphism is compatible with the endomorphism F of 4,
inducing the identity of A. The construction of the ring homomorphism

A = W(A) is as follows: let AF = be the direct limit of the sequence

F F F
A-> A A
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Then, AF - obeys the universal characterization of the Witt vector
W(A) of A. Nextlet P be a prime ideal of A. Then we have a
natural map from A into W(IK(:p)p-m), which is compatible with F.
For example, if K(p) is perfect, there is induced a unique ring
homomorphism from 4 into W(K(p)) of K(p). If K(p) isa

finite field, then there is a natural homomorphism
4 - W(K(p)),

where W(K(p)) is the unique Witt vector of K(p) that is the mixed
characteristic complete discrete valuation ring with its residue class field
K(P). In the case of the Weierstrass family, we let A =Z p[82= 83l
Then for any given closed point p € Spec (4), the residue class field
K(p) is finite. Then the images 3(20) and g(:?) of g, and g4 in
K(p) generate IK(P) over the prime field, i.e. K(p) = (Z/pZ)[g(zo),
3(30)]. The Witt vector W(KK(p)) of K(p) can be described as
0) ©)

follows: each of g,  and g3~ is either a root of unity of order prime

to p, or else zero. Choose an element p e K(p) which is a

multiplicative generator of the multiplicative cyclic group K(p) - {0].

Then eac
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©)

Then each element of K(p), e.g. g,” and g ’, 1s either a power of

p orelse zero. Let a be the multiplicative order of p. Then embed

~

Z, asasubring of C, and let p’ be any fixed root of unity in € of
order exactly a. Then, W(K(p)) = 2 [p’], i.e., the subring of €
generated by Z and p’. Let (g(o)) = (p’)}, where g(o) =p' and
similarly for (g3)) If g(o) 0, then define (g(;_?))' = 0. They are
Teichmiiller representatives of g(o) and g(o) in W(K(p)).

Let A be an O-algebra, and let F be a ring endomorphism of A
which induces the p-th power endomorphism of A /pA. Then, for any
prime ideal P € Spec (A g k)ieq» We have shown in the above how
one obtains a natural homomorphism from A to W(K(p)). For
example, for A = Ep (25, &3], if P is a maximal ideal of A = (A /
P = (A & K)yeq sothat K(p) = Z IpZ2)(g%, g1, then
W(K(p)) = 7 1@, @5 In this case, the natural map A —
W(K(p)) is givenby g, (5)) and g3 &%)’

Let B=W(K(p Y ). Then B isa complete discrete valuation

ring and B ® Q is a field of characteristic zero. If X is a scheme

over Spec (A) that is embeddable over A, then the fibre Xp over
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[K(p) is an algebraic variety over the field K(p). Let Yp =X, X

K(p)

K(p ¥ . Then the zeta matrices have coefficients in the quotient field

P

Ky = B_? Q of the complete discrete valuation ring B =

W(K(p)’ ). The universal coefficient spectral sequence is:

AT®Q

_ t
E‘;.q = Tor, A (H;(X,A ? Q),Kp)

with the abutment Hf: (Yp, K p)' Principally speaking, this universal
spectral sequence shows how the lifted p-adic homology of the scheme
X over Spec (A) with compact supports determines the lifted p-adic
homology of all the fibres Yp in this algebraic family. Furthermore,
the zeta endomorphisms of Hi X, AT t% Q) compute the zeta
endomorphisms of Hi (Yp, K p) of each fibre Yp.

Suppose that K(p) is a finite field. If the term E;"q of the above
universal coefficient spectral sequence is finite dimensional over the

quotient field K P of the complete discrete valuation ring W(K(p))

for all the p and g, we can compute the zeta function of each fibre

polynomi:
p’-th pow

X}p is prc

where we
q. When

module, tl

group wi

family H'

Note that

[K,). Let




X x
PP ke
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Yp = )L’p as follows. Let Pp‘q be the reverse characteristic
polynomial of the endomorphism of the Eﬁ o ~term, which is induced by
p"-th power map, p" = card([K(p)). Then, the zeta function of the fibre

X P is provided by the formula

I P, T)
prm _ prg=odd

?

where we assume that Eﬁ g 0 for all but finitely many pairs of p and
q. When the lifted p-adic homology with compact supports is a free

module, the zeta endomorphism is said to be the zeta matrix.

4. Zeta Endomorphisms and Zeta Matrices

We will compute the zeta endomorphism of the first homology
group with compact supports of the finite points of the Weierstrass
family H(U, A' ? Q). That is:

U =Wg),z N AX(Spec((Z/p2)(gy, 83)))-
Note that H(U, A' ? Q) H{Wz),7 - A ? Q) as seen, e.g., in

[K]. Let K be the quotient field of 4 = Z , [g5, g3], and let KT be
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the quotient field of AT = Ep (g5, g3]T. Even though HCI(U, AT ? Q) is comyj
is not finitely generated over Al QZB Q, Hcl(U, Al % Q)X K isa Q -adic
vector space of dimension two over K. From the universal spectral denotec
sequence corresponding to any non-zero-diver re A, we have the long betweer

€xact sequence:

Ly 1

r
ver o Hi(UA'® Q) - HUA'® Q
4 z

where
SH,WU,A'®Q/t-AT® Q) > o0 - . 4
y 4 y 4
The
One can extract the short exact sequence
module
ll‘"
0-H{U, A" ® Q) - H{U, A" ® Q)—
Z y A endomc
r 4t oAt
H(U', A §Q/: A <§0)—>0. e
Hence, HCI(U AT ® Q) is torsion free, i.e., we have
y 4
: Let e
HU.A' ® Q G H (U, 4" ® Q) ® K.
z £ over A,

The zeta matrix of the free module of rank two

HU.4' Q8 @, 8
z k' 2z




W, 4" ® Q)
Z

R)® K isa

rersal spectral

have the long
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is computed in [K-L]. This free module is isomorphic to the AZ &
Z

Q -adic cohomology of the open subfamily U, of non-singular fibres,
1 T ; . .
denoted as H'(Up, A X ® @Q). The above isomorphism may be given
Z
between generators by
clax A dy » vdx
Xclax A avr » Xvax,
where C=Y2-4X3 + g)X + g;. (See what will follow.)
The zeta matrix W! e Ma (AT®Q) the fr AT X Q
X trald, = on ce 4, : -
module H‘(UA,AZ ® Q) is given as follows: let F:4 — A be an
y 4

endomorphism of Z p -algebra, inducing p-th power map on A,

defined by
F(gy) =g} and F(gs) = g
Let f: Up — Uy be the p-th power endomorphism of the scheme U A

over A A Then define

HY(F, )Y dX) = p XP"! .\/4x3p “gPXP - g8 dx
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and

i \/4x3p - 85X7 - gf ax,

where

A7 85X -8 -

\j4x3p - ghXP - gh - (4 - g,X - g3)" + (4X3 - g,X - g3)"

=\@xX? - g,x - g3)P - pT = Y% pT

1 i
= Yp E pr .
[1220 (1] [(4X3 - 87X - 83)'0))

here pT = (4X> - g,X - g3)P - 4X°P + gb XP + gh. See [K-L] for

necessary recursive formulae.
Therefore, the zeta endomorphism of Hﬁ (U, AJF ® Q) is induced
y 4

from this zeta matrix by the above restriction

H{(U, A" @ Q) HjUA' ® Q) ® K.
z z

The actual construction is as follows: by the definition of the lifted p-

adic homology with compact supports of the Weierstrass family over

A=(2/pZ)(g, &3]

By the .

relative |
Coker (¢
We obtsa

of H(l

2(i-1)
7y

4(i-1)

L A

Therefc

and




daX,

e [K-L] for

is induced

the lifted p-

family over
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H, A' ® Q)= H (A (Spec(ZIp2)(gy, 83)),
A%(Spec((Z/pZ)(g,, 83)) - U,

* ~
0y (AXSpec(Z g2 850)" @ Q).
By the lemma in [K;] on spectral sequences, one shows this third

relative hypercohomology is isomorphic to
dll,O
Coker (@ AIX,V,C'D'® Q@ > Q@Ux.v.c) ® Q)
y 4 Z

We obtain the recursive cohomologous relations among the generators

of HCI(U, AT % Q) as

2(i-1)ACTdX A dY ~ (6i-13)6g,XC VX A dY-(6i-11)9g,C ¢ Vax
AdY, and

4(i-1)AXC X AdY ~ (6i-11)g5C ¢ Dax

A dY-(6i-13)18g,XC " Vax Ady

.
Therefore, we let

2yp-lyp-1
HS(F. (C ax Adr) = BEX- X ax A ay
CP-pT
and

2¢2p-1yp-1
HY(F,f)XC'dX \dY) = P—éf;m%— dX \dY,
-p
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where ———— = CP(1 + pTCP + p’T2C? + p’T3C ¥ + ..). See
CP-pT i
[K,] for necessary recursive formulae. Notice that the above recursive
1
cohomologous relations compute the lifted homology groups of various
singular fibres, e.g., the fiber over P = (g,, g3) has the trivial Sher
homology group. See page 10. See I
83, fora
NOTES
1. The universal spectral sequences are treated in the book [L,],
Chapter 5. As for zeta invariants, see [L,], [L,], [K-L] and [K,]. i (D]
2. A similar computation of p-th power map of Fermat curves may be D]
1
given as follows: let U be the affine Fermat curve given by X'+ '
~ {DZ]
Y' =1 over Z/pZ. Then the associated Z P ® Q-adic {
Z a
cohomology H(U, Zp ® Q) is generated by (/-1)+ (/- 2) (D]
y 4
Ka
elements (X®YP"1dx), where 0 =0,1,..,/-3 and B=1-1, : L
l, ..., 2l - 3. There is a cohomologous relation: [Ko]
' [K-L]
Xl+l-2YB-[+1dX _~ X1+21-2yﬁ-l+ldx L
i
i (K,
for i=0,1,..,1-1. Thenthe (/- 1)« (Il - 2) square matrix
H'(f, Q,) on HY(U, Q) is defined as (K,]
]
PPN ayB-l+1
H'(f, Q)XY dX) (K]




P 4+..). See
ve recursive
>s of various

s the trivial

book [L,],
and [K,].

rves may be

ven by x4+
® Q-adic
Zz

=1)0i(l= 2)

d B=1-1,

|uare matrix
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k N B-l1+1
& pXﬁP"'PH yP(B-1+1) {Z [%] (ﬂ) ] dX,

k20 \k

where u=(1-X'Y, pT=1-X - -xP).
See 1. V. Volovich, p-adic string, Class. Quantum Grav. 4 (1987),

83, for a connection to a p-adic string theory. See also [Ko].
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